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Abstract—In this paper, an optoelectronic sampler and an au-
tocorrelator are described. The devices are made with microstrip
propagation lines, and ultra-rapid phetoconductive switches are
integrated in the same substrate. These devices are studied along
two interacting directions: sampler description and operation,
and electromagnetic study. In particular, the electromagnetic
study is discussed here. The purpose of the first is to understand
the electromagnetic behavior of the optoelectronic sampler. The
second study enables us to simulate the autocorrelator operation
in order to characterize the ultra rapid photoconductive switch.

I. INTRODUCTION

ITH the development of mode-locked lasers and new

methods for preparing high speed materials, it has be-
come possible to extend the response time of photoconductors
into the picosecond range [1]. These photoconductors which
can convert ultra fast optical pulses to ultra fast electrical
pulses can be used as pulse generators or as sampling gates
[2]-[4]. In order to sustain these advances, the development
of optoelectronic devices must be up to the challenge.

For example, thanks to advances in Fhese technologies, it
is possible to characterize monolithic millimeter-wave inte-
grated circuits [5]. Microwave measurements have long been
dominated by frequency domain instrumentation but with high
speed time domain techniques, results can be obtained over
broad frequency ranges in a single experiment. Optoelectronic
or electro-optic sampling techniques permits to obtain complex
reflexion and transmission parameters [6]. Several properties
of antennas can be determined also using photoconductive
pulse generation and sampling (bandwith, radiation, and po-
larization patterns).

For fusion experiments, ultra-fast phenomena which are not
easily repetitive must be observed and can not be studied
with oscilloscopes. CEA/LETI (“Commissariat 4 1’Energie
Atomique™) is developing an instrumentation system capable
of analyzing an ultra fast pulse which is emitted once only
[7]. The originality of this optoelectronic device is a single
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acquisition of all the sampled signal. An electromagnetic study
permits to show the feasibility of this device. Thanks to the
electromagnetic study, CEA/LETI is building a sampler which
makes use of microelectronic technology.

The other optoelectronic device presented in this paper is an
autocorrelator which is able to determine several points of a
single pulse autocorrelation function (light, x-rays, ionizing
pulses). The device requires two photoconductors, one of
which is a pulse generator and the other a sampling gate.
From the experimental autocorrelation function, it is difficult
to deconvolve to deduce the photoconductor response. An
electromagnetic study permits to determine the photoconductor
switches response This study takes the capacitance coupling
created by the photoconductor gap and the phenomena caused
by the high frequencies signal (dispersion, radiation) into
account. The method consists in modifying the response of
the photoconductive switch until the autocorrelation function
determined by simulation is similar to the one obtained by
measurement.

So, we will describe two devices: an optoelectronic sam-
pling device and an autocorrelator. Then, the electromag-
netic method (finite-difference time-domain method (FDTD)
method) used to analyze these devices is presented briefly.
First developed by Yee [8], FDTD simulation has been applied
by many investigations to a wide range of electromagnetic
problems. This method is well adapted to propagation analysis
in the microwave and millimeter range [9], and particularly
adapted to study devices which propagate fast transient states
such as these generated by a short laser pulse [10], [11]. On
the one hand, the electromagnetic analysis of an optoelectronic
sampler is described, and on the other hand, the autocorre-
lation function is determined by the simulation, in order to
characterize the photoconductive switch.

II. DESCRIPTION AND OPERATION OF TWO DEVICES

A. Sampler

The sampler is represented in Fig. 1. The device consists of
one propagation line and N sampling cells.

Every cell consists of:

1) 1 photoconductor;

2) 1 sampling line;

3) 1 memory capacitor.
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Fig. 2. Autocorrelator.

The lines are microstrip lines which have the same charac-
teristics (W = 120 ym and H = 130 pm). All the microstrip
lines have the same dielectric substrate (sapphire substrate
g = 9.95).

The optoelectronic sampler is a device capable of getting
several points of a single pulse. Sampling consists in simul-
taneously switching off N photoconductor elements with a
short laser pulse and reading the collected electric charges. The
electric pulse to be sampled is transmitted on the propagation
line with a matching end. When the signal has been entirely
distributed along the line, a laser pulse illuminates all the
photoconductor simultaneously. Then, every sampling line
propagates a part of the signal which polarizes the photo-
conductor to the memory capacitor. The charge stored by the
capacitors makes it possible to reconstitute the sampled signal.
The closer the sampling lines, the better the reconstitution.

To suit the applications of the optoclectronic sampler, the
propagation line must be able to transmit signals (200-300
ps) whose frequency bandwidth is up to 10 GHz, and the
sampling lines must be able to transmit the charge of ultra
fast pulses (8 ps). The sampling resolution must be equal to
18 ps. The frequency spanned by the electric pulses from the
photoconductor, can be a few hundred gigahertz.

B. Autocorrelator

The device is represented in Fig. 2. It is made by CEA/LETIL
The device is made up of metallic striplines combined with
a photoconducting thin film. When interacting with a pho-
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Fig. 3. Electromagnetic components in a cell.

toconductor element connected to the bias, an electric pulse
dependent on the light pulse is created and propagates along
the propagation line. The other photoconductor connected to
the capacitor is illuminated after a delay time ;.

The collected charge is proportional to the | f(¢) x f(t+
7;) dt value for 7; of the signal autocorrelation function [12].

For different values of 7;, all the points of the autocor-
relation function will be determined. For the sake of the
experiment, the pulse is obtained from a mode-locked and
frequency-doubled Nd : YAG laser. The wavelength of the
pulse is 532 mm. The average power is about 150 nJ. The
biasing potential of photoconductor P is 150 V.

III. ELECTROMAGNETIC ANALYSIS OF
THE BEHAVIOR OF THE TwO DEVICES

A. Adapting the Numerical Method for
Electromagnetic Analysis

Results are obtained by using a finite difference time domain
algorithm (FDTD) which gives direct solutions of Maxwell’s
time dependent curl equations. Maxwell equations are first
differential equations that can be written thus

. 0H

F=—-—pn——-or 1
cur hay (N

. oF -

H=—¢— /. 2
cur €8t+j 2)

The Maxwell equations are discretized in the space and
time domains by using a Taylor development of the third
order. Space discretization is made according to the scheme
developed by Yee [8].

To analyze an open structure, the structure and the surround-
ing space must being divided into elementary parallelepipeds
called cells. The six electromagnetic components are deter-
mined on each cell as shown in Fig. 3. Such a choice permits
to center the space derivatives. The time domain derivatives
are centered by calculating the electric and magnetic fields at
different half time steps.
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As it is impossible to cell infinite space numerically, open
space simulation is achieved by adding absorbing media
around the celling [13].

The use of parallelepiped cells makes it possible to accu-
rately modelize volumes and surfaces. For example, the FDTD
method has been applied to a microstrip bend characterization
and a good similarity between theoretical and experimental
results validates the theoretical method [9]. This method must
be adapted to analyze the optoelectronic devices.

Up to now, the feed method for the line has consisted

" in simulating a conductor strip perpendicular to the line. At
one end of the strip, vertical electric fields are applied on
the whole width [9]. The discontinuity which is created by
the feed, generates higher order modes or surface waves or
free space waves in particular when the spectrum required
for transmission covers a large bandwidth in the frequency
domain. The optoelectronic devices propagate ultra fast pulses.
So, a new method has been developed. The new line feed
consists in obtaining the static map of the electric field, thanks
to the resolution of Laplace’s equation in a plane perpendicular
to the propagation vector (Fig. 4). The field amplitude is
modulated by any pulse form.

Another adaptation of the electromagnetic tool ‘concerns the
simulation of photoconductor operation. When the photocon-
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Fig. 6. Comparison between the transmission parameter measured for an 8.5
mm long line section and one calculated by the FDTD method.

ductor is illuminated, it generates a pulse which depends on
the characteristics of the laser pulse, the biasing voltage and
the characteristics of the photoconducting material. Surface
conductivity, which is a function of time, is applied to. the
photoconductor site to simulate the photoconductor response.
The amplitude of the photogenerated current depends on the
bias potential and the maximum amplitude of the conductivity.
The simulation by the FDTD method permits us to allow for
the capacitance coupling created by the gap.

Consequently, this method is used for the calculation con-
cerning the optoelectronic sampler and an autocorrelator.

B. Applying the Method to the Analysis
of the Oproelectronic Sampler

Behavior of the Propagation Line: To know the general be-
havior of the propagation line alone, the input signal is a
pulse whose frequency bandwidth is approximately 10 GHz
for —3 dB. The gradual evolution of the pulse waveform along
this- transmission line alone with taking the ohmic losses into
account is shown on Fig. 5. The section of the line can be
characterized by the Sp; transmission factor. The dispersion of
this line is not very high within the frequency range between 0
GHz and 20 GHz; however the ohmic losses induce a decrease
of the magnitude of the current which is propagated along
4 cm, which is the length of the main line because of the
temporal window.

In order to be able to compare the simulation and the
experiment, we determine the transmission parameter between
two planes 8.5 mm apart. In the theoretic modelization, the
strip conductivity is equal to half the conductivity of gold
and the thickness of the metal strip is 0.5 pym. On Fig. 6,
the transmission parameter is measured for an 8.5 mm-long
section using a Wiltron network analyzer and is compared to
the transmission parameter calculated by the FDTD method.
These plots are similar (they differ by 0.2 dB approximately).
For the frequency bandwidth of this pulse, the skin effect does
not cause any additional distortion.

The electromagnetic study presented above is the analysis
of the propagation line alone, but in reality, the optoelectronic
sampler consists of line propagation and sampling lines. So,
we simulate the electromagnetic behavior of the propagation
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Fig. 7. Transmission parameters for various structures.

line in the presence of the sampling lines. For this study,
the ohmic losses are not taken into account. The input signal
bandwidth is larger than in the case of the previous signal used
to study the propagation line alone. Fig. 7 shows the effect of
the presence of three sampling lines on signal propagation
along the principal line. For example, the transmission factor
which characterizes an 8.5 mm long line section is —0, 65 dB
for 50 GHz. These parameters are not very different from the
transmission parameter in the presence of one sampling line
multiplied by three. The distance between the propagation line
and the sampling line is the length of the photoconductor.
We simulate the propagation line in the presence of three
sampling lines but the photoconductor is twice as long (60
pm). The transmission parameter is plotted in Fig. 7. As was
foreseeable, the propagation line propagates without deforma-
tion (|S21|# 0). So a trade-off will have to be made between
a sufficient photoconductor length to minimize the coupling
effect and enough sensitiveness for photodetection.
Acquiring the Sampled Signal: The sampled signal is ac-
quired thanks to the charge stored in the capacitors which
are at the ends of the sampling lines. Charge storage is not
instantaneous: the pulse will come and go several times along
the sampling line before obtaining the signal samples. The
installation of a steady state is simulated. The photoconducting
element is polarized by an electric signal which is propagated
along the principal line. Then, the photoconductor is illumi-
nated and an ultra-fast Gaussian pulse (whose full width at half
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maximuim is 3 ps and whose frequency bandwidth is about 100
GHz at —3 dB) is generated. This pulse is entirely distributed
along the sampling line after illumination. The current is
integrated in the time domain in order to find out the electric
quantity which is photogenerated. This charge is proportional
to the photoconductor biasing voltage. Several nanoseconds
after illumination, the current is equal to zero, and the voltage
is constant on the capacitor terminals (Fig. 8). The charge
stored in the capacitor is equal to the product of the capacitance
by the terminal constant voltage. The photogenerated charge
is equal to the charge stored in the capacitor.

Then, we study the acquisition of two samples: we simulate
the structure represented in Fig. 9. In order to know the effect
of the coupling between the sampling lines on the charge
stored in the capacitors, the photogenerated pulses are chosen
with different shapes and different spectrums. The closeness of
two sampling lines (therefore the coupling) distorts the pulses
during the propagation along the sampling lines. However,
the photogenerated charge on line 1 is equal to the charge
on the C4 capacitor terminals. This conclusion applies to
line 2 as well. Finally, the coupling between the sampling
lines does not affect sampling acquisition. The limit of the
distance between two consecutive sampling lines depends
only on the space distribution of the pulse generated by the
photoconductor. These lines can deform the ultra-fast pulses
because of dispersion. To obtain the sampled signal, the
sampling line must be able to transmit the photogenerated
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charges but it need not be able to transmit the energy of
photogenerated ultra-fast pulses.

Optoelectronic Sampler Simulation: The full simulated de-
vice is a sampler with 5 sampling lines (Fig. 10). The charac-
teristics of the microstrip line are

W =120 gm
H =130 pym
Substrate : sapphire (&, = 9.8).

This sampler must analyze a signal whose full width is 40
ps and with a resolution of 7 ps.

Fig. 11 shows the space distribution of the current to be
analyzed and the sampled signal. The similarity of the two
curves shows the feasibility of such an optoelectronic sampler.

C. Applying the Method to the Analysis of the Autocorrelator

The aim of the electromagnetic study is to obtain an
autocorrelator function similar to the measured function.

To do so, it is necessary to adapt the shape and amplitude of
the conductivity, which enables us to simulate the response of
the photoconductor. The characteristic of the photoconductor
can be deduced from the simulated autocorrelation function.
For- this analysis, we choose a photoconductivity shape which
depends on the carrier lifetime (coefficient 7,.), and the laser
pulse (coefficient W, and o,,)
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Fig. 13.  Time currents for various delays.
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f@t) =e /0 ¢~z ¢ dt. \ Q)

The parameters that we make vary are the coefficients %,
and 7. (to adapt the shape) and the coefficient g, (to adapt
the amplitude).

The conductivity represented in Fig. 12 corresponds to
t, = 44,5 ps, 7 = 17,5 ps, W, = 18 ps, and d,, = 485
(Qm)~!. The pulse which is propagated along line L3 due to
the two photoconductors illumination for different delays is
represented in Fig. 13. This pulse is obtained by subtracting
the pulse calculated on line L3 without photoconductor P2
illumination (an obscurity current is created by capacitance
coupling) from the signal obtained under illumination. When
the delay grows longer, the current form is more disturbed.

On line L3, as previously, the charge which will be stored
by the capacitor is equal to the charge contained in the
photogenerated pulse which is propagated along line L3. So,
to build the autocorrelation function, the current has been
integrated up to 245 ps, when the signal reflected by the
capacitor occurred. :

The calculated autocorrelation function corresponds to that
of the measured function (Fig. 14). The characteristic deduced
from the electromagnetic study shows that the resistance of
the photoconductor under illumination is about 3 k{2 and the
transient conductivity is deduced as well.

- IV.  CONCLUSION

A theoretical method is usually used for ultra high frequency
structures (passive microwave circuits, antennas). This method
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has been adapted to analyze the optoelectronic devices which
propagate ultra fast transients (new microstrip feed and photo-
conductive switch). It has been applied here to the study of two
systems: a sampler to show the feasibility of such a device and
an autocorrelator to determine the photoconductor response.

Owing to recent advances in microwave and optic domains,
it has today become possible to consider sampler for physical
instrumentation with a better resolution. One of the challenges
in this domain is to search for a structure suitable to the
ultra fast pulse propagation (duration below picosecond). The
applying of the method presented in this paper will advise us
in the conception of new devices using other technologies (for
example coplanar waveguide).
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